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Abstract
Hierarchical triple systems play a crucial role in various astrophysical contexts, and therefore the understanding of their stability is important.
Traditional empirical stability criteria rely on a threshold value of Q, the ratio between the outer orbit’s pericenter distance and the inner orbit’s
semi-major axis. However, determining a single critical value of Q is impossible because there is a range of the value of Q for which both stable
and unstable systems exist, referred to as the mixed-region. In this study, we introduce a novel method to assess the stability of triple systems
within this mixed-region. We numerically integrate equal-mass, coplanar hierarchical triples within the mixed-region. By performing Fourier
analysis of the time evolution of the semi-major axes ratio during the first 1000 inner orbital periods of the systems, we find notable features in
stable systems: if the main peaks are periodically spaced in the frequency domain and the continuous components and irregularly spaced peaks
are small, the system tends to be stable. This observation indicates that the evolution of stable triples is more periodic than that of unstable ones.
We quantified the periodicity of the triples and investigated the correlation between the Fourier power distribution and the system’s lifetime. Using
this correlation, we show that it is possible to determine if a triple system in the mixed-region is stable or not with very high accuracy. These
findings suggest that periodicity in orbital evolution can serve as a robust indicator of stability for hierarchical triples.
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1 Introduction1

A hierarchical three-body system consists of a binary and a third2

body orbiting around the binary. The stability of hierarchical three-3

body systems is a long-standing problem in the fields of dynamical4

astronomy, classical mechanics, and mathematics. Understanding5

its stability is not only of theoretical interest but also a practical6

necessity for the interpretation of astronomical phenomena.7

For example, a highly accurate three-body stability condition8

is essential for N -body simulations of globular clusters (Aarseth9

2003; Heggie & Hut 2003). In N -body simulations, the compu-10

tational cost of binary and hierarchical three-body systems is very11

high, because their orbital timescale is many orders of magnitudes12

shorter than the dynamical or thermal timescale of the parent clus-13

ter. Accordingly, in typical N -body simulations, the evolution of14

binary systems is computed in the following manner. In the case of15

stable systems, we can integrate them using some variation of or-16

bit averaged perturbation methods such as the slow-down method17

(e.g., Mikkola & Aarseth 1996; Wang et al. 2020). These methods18

are designed to reduce the number of time steps needed for orbit19

calculations while maintaining high accuracy. On the other hand,20

for unstable systems, we cannot use such approximate methods be-21

cause such systems should be integrated without approximation.22

This is because applying approximation to unstable systems can23

lead to physically incorrect solutions. In principle, when integrat-24

ing such unstable systems without approximation, the computa-25

tional cost would not be very large, since such unstable systems26

disintegrate in relatively short timescales. Thus, prediction of the27

stability of triple systems with high accuracy is essential for effi- 28

cient and accurate simulation of globular clusters. 29

However, there is no such high-accuracy prediction method. A 30

common issue is the misclassification of the dynamical stability 31

of these systems — that is, mistaking a stable system as an un- 32

stable one or vice versa. Such misidentification can severely de- 33

grade computational efficiency by causing unnecessary direct in- 34

tegrations, effectively stalling the simulation. Moreover, incorrect 35

classification may result in physically inaccurate outcomes. 36

Here, we provide a brief review of hierarchical triple stability 37

criteria. Traditionally, numerous stability conditions have been 38

formulated as expressions that denote the minimum value of Q: 39

Q=
qout
ain

=
aout(1− eout)

ain
, (1) 40

where q is the pericenter distance, a is the semi-major axis, e is 41

the eccentricity, and subscripts “in” and “out” correspond to “in- 42

ner” and “outer” orbit, respectively. We define the critical value 43

of the stability parameter Q, denoted as Qcrit, as the minimum 44

value above which the triple system remains dynamically sta- 45

ble. Using semi-analytical or numerical methods, Qcrit is fitted 46

as a function of the orbital elements of the system, i.e., Qcrit = 47

Qcrit(m1,m2,m3, ain, aout, ein, eout, I, . . . ), where the variables 48

include the component masses (m1, m2 are the masses of inner 49

particles and m3 is the that of the outer particle), semi-major axes, 50

eccentricities, and orbital inclinations. Dependence on other pa- 51

rameters such as the arguments of periapsis (ω) or orbital phases 52

is usually neglected. This is because including those parameters 53

would make the parameter survey significantly more computation- 54
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ally expensive, and the resulting criterion would become less prac-55

tical for application. By comparing the actual value of Q for a56

given three-body system with the fitted Qcrit, one hopes to judge57

the system to be unstable if Q<Qcrit, and stable if Q>Qcrit.58

Harrington (1972) found that the minimum value of Q for sta-59

bility differs between prograde and retrograde orbits. Harrington60

also derived a stability criterion for coplanar orbits including three-61

body mass dependency (Harrington 1975, 1977). Eggleton &62

Kiseleva (1995, hereafter EK95) introduced a parameter Y , which63

is defined as the ratio of the apocenter distance of the inner to the64

pericenter distance of the outer, instead of using Q. They also65

empirically derived a stability criterion in terms of Y . Both Q66

and Y represent the distance between the inner and outer binaries,67

with no substantial difference between them. Mardling & Aarseth68

(1999, 2001, hereafter MA01) proposed a well-known dynamical69

stability criterion for hierarchical triples:70

Qcrit,MA01 = 2.8

(
1− 0.3I

π

)[(
1+

m3

m1 +m2

)
1+ eout√
1− eout

]2/5

,

(2)71

where I is the inclination, m1 and m2 are the masses of inner, m372

is the mass of outer, and e is the eccentricity. Mylläri et al. (2018,73

hereafter M18) further modified the MA01 criterion by incorpo-74

rating the dependence on the inner eccentricity, while Vynatheya75

et al. (2022, hereafter V22) incorporated the effect of ZLK mech-76

anism (von Zeipel 1910; Lidov 1962; Kozai 1962) and refined the77

criteria proposed by EK95 and MA01. Numerous three-body sta-78

bility conditions have been reported for use in N -body simulations79

(e.g., Valtonen et al. 2008; Georgakarakos 2013; Mushkin & Katz80

2020; Hayashi et al. 2022). Recently, several studies using ma-81

chine learning have been reported (e.g., V22; Lalande & Trani82

2022, hereafter LT22).83

Any formula for Q proposed so far does not really discriminate84

stable and unstable systems, since for the values of Q close to the85

“critical” value of Q, Qcrit, for any of these criteria, some real-86

izations of the three-body systems turned out to be stable while87

some to be unstable. In this parameter space, both stable and un-88

stable systems coexist, forming what is commonly referred to as89

a mixed-region (e.g., Dvorak 1986). One reason for the existence90

of this mixed-region is that in most formulas orbital elements such91

as the argument of periapsis ω or the initial phase are not taken92

into account, although these elements can significantly influence93

the stability of three-body systems (Hayashi et al. 2022, 2023).94

Even if one attempts to extend the fitting procedure to include95

these additional orbital elements, the intrinsic chaotic nature of the96

three-body problem makes precise classification difficult. This is97

particularly true in the mixed-region, where the system exhibits98

strong chaos, and small differences in orbital elements can lead99

to large variations in the lifetime of the system. Recent studies100

suggest that stability boundaries in chaotic systems may exhibit101

fractal-like structures, with stable and unstable regions intricately102

interwoven across all scales (e.g., Trani et al. 2024). This complex-103

ity underscores the limitation of defining deterministic boundaries104

based solely on initial parameters like Q.105

Therefore, to achieve high-accuracy stability classification in106

the mixed region, it is essential to evaluate not only the initial107

parameters but also the subsequent orbital evolution itself. LT22108

simulates triple systems with Q values 5%–15% below the MA01109

critical threshold and employs machine learning on the orbital el-110

ements obtained from the simulations, achieving an Area Under111

Receiver Operating Characteristic Curve (AUC for ROC curve) of112

about 0.95. However, their approach uses a relatively large time113

step for sampling, and it remains unclear which aspects of the114

orbital elements are associated with instability. In addition, the 115

AUC value of 0.95 is rather low to be used in N -body simulations. 116

Hence, in order to evaluate stability by taking into account the or- 117

bital evolution, a more detailed analysis of the dynamical behavior 118

of orbital elements is required. 119

The aim of this study is to develop a new method to determine 120

the stability of hierarchical triples that can overcome the problems 121

discussed above. First, we conducted numerical integrations on 122

coplanar equal-mass hierarchical three-body systems whose Q at 123

the initial condition is in the mixed-region. Here we adopt the 124

critical value Q by MA01 as Qcrit of the mixed-region. Then, 125

we investigate the differences between long-lived and short-lived 126

systems from the perspective of orbital element periodicity using 127

Fourier analysis. 128

Our motivation for employing Fourier analysis stems from the 129

expectation that the fundamental nature of a system’s orbital evo- 130

lution—whether it is regular and quasi-periodic or irregular and 131

chaotic—should be imprinted in its frequency spectrum. We hy- 132

pothesized that long-term stable hierarchical triple systems, which 133

tend to exhibit quasi-periodic motion, would show a Fourier spec- 134

trum dominated by discrete, well-defined peaks corresponding to 135

the principal orbital frequencies and their harmonics. In con- 136

trast, systems prone to instability and chaotic behavior were an- 137

ticipated to display more complex spectra, characterized by broad- 138

ened peaks, significant continuous components, or an increased 139

power in low-frequency modes, reflecting the irregular and ape- 140

riodic nature of their orbits. By examining these spectral char- 141

acteristics, particularly within a relatively short initial span of the 142

system’s evolution (the first ∼103Pin), we aimed to identify robust 143

signatures that correlate with long-term stability, thereby provid- 144

ing a more discerning tool for stability assessment in the challeng- 145

ing mixed-region. 146

The plan of this paper is as follows: In Section 2, we describe 147

our models and method for our numerical integration. We show the 148

result of our simulation and the performance of our new stability 149

criterion in Section 3. Section 4 is for discussion. 150

2 Methods 151

In this section, we describe the initial conditions and numerical 152

methods used in our study. We numerically integrated hierarchi- 153

cal triple systems with Q values smaller than the lower limit de- 154

termined by the MA01 criterion until the hierarchical structure of 155

the systems was disrupted or the time reached to 109Pin. Only 156

Newtonian gravity is considered, neglecting any general relativis- 157

tic effects. 158

2.1 Initial Conditions 159

Our coplanar three-body system consists of a inner binary and a 160

third body, which we refer to as "inner" and "outer". The two bod- 161

ies that form inner binary has indices 1 and 2, while the outer body 162

has index 3. We consider two types of coplanar cases, prograde 163

orbits with inclination I = 0 and retrograde orbits with I = π. 164

We fixed some of the parameters and initial orbital elements: 165

mass (m1 =m2 =m3 = 0.5M⊙), inner semi-major axis (ain = 1 166

au), eccentricity (ein = 0.5, eout = 0.25) and inner argument of 167

periapsis (ωin = 0). These parameters are not special values but 168

rather arbitrary ones. We uniformly sample every 2π/10 radian of 169

outer arguments of periapsis (ωout∈U [0,2π)) and mean anomalies 170

(Min,Mout ∈ U [0,2π)). The list of initial conditions is shown in 171

Table 1. 172
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Table 1. Initial conditions. In the coplanar case, the longitude of the as-
cending node is not defined. For the convenience of numerical integra-
tions, we set the longitude of the ascending nodes as Ωin = Ωout = 0.
Outer argument of periapsis ωout and mean anomalies Min,Mout take
the value 2πi/10, where i = 0,1, ...9.

Parameters Symbol Value
mass of particles m1,m2,m3 0.5 M⊙
inner semi-major axis ain 1 au
inner eccentricity ein 0.5
outer eccentricity eout 0.25
inner argument of periapsis ωin 0
outer argument of periapsis ωout U [0,2π)
inner mean anomaly Min U [0,2π)
outer mean anomaly Mout U [0,2π)

We set aout so that Q at the initial condition of each run is in173

the mixed-region. By applying our initial parameters in Table 1174

to equation (2) , we can define the stability threshold as Q ≃ 3.81175

for prograde orbits and Q≃ 2.67 for retrograde orbits. These two176

Q values represent the stability limits for the coplanar cases deter-177

mined from MA01 criterion. So we use Q= 3.80,3.77,3.75,3.73178

for prograde orbits, and Q = 2.60,2.58,2.55,2.52 for retrograde179

orbits. These values of Q are also arbitrary, but they lie in a region180

where stable and unstable systems coexist, making them appropri-181

ate for the purpose of this study. Once Q is determined, the outer182

semi-major axis (aout) can be calculated from equation (1), and all183

the orbital elements can be obtained. When the Q is determined,184

then aout can be obtained using equation (1).185

Our initial conditions consist of two types of orbital inclination:186

prograde and retrograde. For each case, there are four different187

values of Q, along with three parameters that are uniformly dis-188

tributed. Therefore, there are 4×10×10×10=4000 initial condi-189

tions for prograde orbits, and 4000 initial conditions for retrograde190

orbits as well.191

2.2 Numerical Method192

We integrate coplanar equal-mass triples for a maximum time of193

109Pin, where Pin is the initial inner orbital period. We continue194

the integrations until the system disintegrates or the time reaches195

to 109Pin. When the binding energy (i.e., the energy needed to dis-196

assemble the system) of either the inner or outer binary becomes197

negative, we regard the system as disintegrate. The snapshots are198

recorded at intervals of 0.1Pin for the first 103Pin. This interval is199

determined by balancing computational resources with the granu-200

larity of the data. By storing snapshots at such fine intervals, we201

can improve the analysis accuracy in the subsequent Fast Fourier202

Transform (FFT).203

We used Algorithmic regularization (AR) for our integration,204

which is also called as Time-Transformed Symplectic Integrator205

(TSI) or LogH method (Preto & Tremaine 1999; Mikkola &206

Tanikawa 1999). AR is described in the extended phase space.207

Using AR, time is treated as one of the variables to be integrated in208

an extended phase space composed of time, positions, and veloci-209

ties. When applied to time integration of a two-body problem with210

the leap-frog method, AR gives the exact trajectory, the conserva-211

tion of energy, and angular momentum of the system. For these212

reasons, AR is well-suited for long-term integration of few-body213

systems. We combine AR with a 6th-order symplectic formula214

by Yoshida (1990) to improve its accuracy. As stated in Wang215

et al. (2020), the desirable properties of AR are preserved even216

when combined with the Yoshida 6th-order symplectic method. 217

In this study, we modified the sample code included in the SDAR 218

library 1 (Wang et al. 2020) to create a numerical code for the 219

AR+Yoshida6th method. SDAR is an open-source library for in- 220

tegrating few-body systems, and it is available for anyone to use. 221

In addition to the AR+Yoshida6th method, we performed similar 222

simulations with TSUNAMI (Trani & Spera 2023) and confirmed 223

that our results are independent of the integrator used. 224

3 Results 225

3.1 The overall results of all integrations: the 226

distribution of the survival time 227

Figure 1 shows the distribution of the survival time. In the pro- 228

grade case, the majority of systems break up in the period between 229

103Pin and 106Pin. The number of systems with lifetimes between 230

107Pin and 109Pin is extremely small, and those surviving beyond 231

109Pin account for approximately 1% to 4% of the total. In the 232

retrograde case, the distribution is broader than that of the pro- 233

grade case, with most systems breaking up in the period between 234

102Pin and 106Pin. Systems surviving beyond 109Pin account for 235

approximately 5% of the total, except for the case of Q= 2.52. 236

As shown in figure 1, even systems with the same Q exhibit 237

variations in survival time of several orders of magnitude. Our ini- 238

tial conditions vary only the argument of periapsis (ω) and initial 239

phases for a given Q, so the combination of ω and phases pro- 240

duces the distribution observed in figure 1. The current stability 241

conditions incorporate dependencies on the mass, semi-major axis, 242

eccentricity, and orbital inclination, but the dependence on ω and 243

phases has not yet been thoroughly investigated. Therefore, the 244

distribution of stability and survival time observed in figure 1 can- 245

not be captured at all by the current stability conditions. 246

3.2 Periodicity of orbital evolution 247

In this section, we compare the orbital evolution of stable and un- 248

stable systems shown in figure 1. First, we explain the mechanism 249

of system destabilization. Figure 2 shows the time evolution of or- 250

bital elements and the time evolution of the x-coordinates of each 251

of the three bodies for a prograde orbit with Q = 3.75(ωout = 252

0,Min = π/5,Mout = 0). Note that in our calculations the orbit is 253

in the x-y plane. In this case, the three-body system breaks down at 254

approximately 10500Pin, but since this study only collects detailed 255

output up to 10000Pin, the data is shown up to 10000Pin, which 256

is sufficient for our explanation. The orbital evolution shows that, 257

initially, the system evolves in a relatively periodic manner up to 258

approximately 7000Pin. However, around 8000Pin, fluctuations in 259

the orbital elements occur, which contribute to the destabilization 260

of the system. Eventually, the outer orbit becomes highly eccen- 261

tric. Systems that reach this state eventually undergo disruption. 262

Figure 3 shows the trajectories of the system from figure 2 as 263

viewed in the orbital plane (x-y plane). The initial orbital varia- 264

tions occur between 7000Pin and 8000Pin (upper center and right 265

in figure 3), during which it is evident that the shape of the outer 266

orbit undergoes significant changes before and after this time. 267

Based on the above considerations, it is anticipated that stable 268

orbits will not undergo significant variations over time. This raises 269

the question: what distinguishes stable orbits from unstable ones? 270

In the following, we conduct a comparative analysis between sta- 271

ble and unstable orbits in order to elucidate their differences. 272

1 https://github.com/lwang-astro/SDAR
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Fig. 1. The distribution of survival time distribution for each Q. The left panel is prograde cases and the right panel is retrograde cases. For each cases,
we distribute 50 bins between 101Pin to 109Pin on a logarithmic scale, and we plot the relative frequency of each bin.
ALT text: Histogram plots for each of the eight Q values.
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Fig. 2. The orbital evolution of an unstable prograde orbit with Q = 3.75 and the time evolution of the x-coordinates of the three bodies.
ALT text: Time evolution of the orbital elements and the x-coordinates of the three bodies.
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ALT text: Six snapshots depicting the trajectory of the orbit.

Figure 4 shows the orbital evolution over the first 1000Pin of273

the systems shown in figure 2 and that of a stable system having274

the same value of Q = 3.75. The unstable system (the left-hand275

side panel) exhibits significant irregular variations in all orbital ele-276

ments while irregularities seem smaller for the stable system(right-277

hand side panel). This difference might imply that there exists a278

meaningful relationship between the degree of the periodicity of279

the orbital elements and the long-term dynamical stability of the280

system.
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ALT text: A figure comparing four orbital elements between stable and
unstable orbits. Four orbital elements are the semi-major axis ratio, Q,
inner eccentricity, and outer eccentricity.

281

In figure 4, we just give one particularly illustrative example.282

We need some measure for this degree of periodicity. Therefore,283

we employ the Fast Fourier Transform (FFT) to quantitatively in-284

vestigate the relationship between periodicity and dynamical sta-285

bility. In this paper, as the first trial, we focus on the evolu-286

tion of the ratio of semi-major axes of the inner and outer orbits287

(ain/aout).288

Here, we present our procedure to apply FFT to a measured289

quantity. In this study, we output the orbital elements with a 0.1Pin290

interval for the first 103Pin. Since the FFT requires the num-291

ber of data points to be a power of 2, we extracted the first 8192 292

data points, corresponding to 819.2Pin ∼ 103Pin, and performed 293

the FFT. Before performing the FFT, the mean value of the 8192 294

equally-spaced points in time from 0Pin to 819.2Pin is calculated 295

and subtracted from each data point. This step is done to mini- 296

mize the DC component as much as possible. After this process, a 297

Hanning window function is applied to the data, and then the FFT 298

is performed. The resulting amplitudes are normalized by dividing 299

them by half the total number of data points, i.e., 4096. The sam- 300

pling frequency of the FFT is 10 P−1
in , and the Nyquist frequency 301

is 5 P−1
in . We discarded systems that survive less than 819.2Pin, 302

since we cannot do FFT analysis on such systems for sufficient 303

time. There are 5 prograde systems and 1287 retrograde systems 304

whose survival times did not reach 819.2Pin, so we present the 305

results for 3995 prograde cases and 2713 retrograde cases. 306

Figure 5 shows 16 examples of our FFT results. The panels 307

are arranged from top to bottom in the order of survival time for 308

four different values of Q (two prograde and two retrograde). If 309

the orbital evolution is perfectly periodic, only the fundamental 310

frequency (f0) and its integer multiples (2f0,3f0, . . . ) would ap- 311

pear in the frequency domain with a small effect of the window 312

function which appears as small broadening of each peak and low- 313

frequency terms. The orbital evolution of the system with evenly 314

spaced peaks and fewer continuous components, which are side- 315

lobes of the peaks, therefore, is more stable. When we compare 316

systems with different lifetimes (for instance, comparing the top 317

and bottom columns), it is evident that the stable systems exhibit 318

more pronounced peaks with smaller side-lobes and non-periodic 319

“noises”. This trend indicates that stable systems are more peri- 320

odic. This statement might sound almost like a tautology, since by 321

definition periodic systems are stable. However, as far as we know 322

this is the first time that the numerical determination of periodic- 323

ity is applied to the stability of hierarchical triples. Additionally, 324

a consistent feature across almost all cases is the presence of a 325

noticeable peak near 0 P−1
in . This peak is not the fundamental 326

frequency and its strength seem to be related to the early destabi- 327

lization before 109Pin. 328

Figure 6 depicts examples of the FFT results (Q = 2.60, the 329

rightmost panel of figure 5), focusing on the frequency range up to 330

0.45. The four cases in figure 6 all correspond to retrograde cases, 331

but a similar tendency is observed for prograde motion or cases 332

with different Q values. 333

First, we clarify the physical meaning of the peaks. There are 334

three peaks in figure 6, which correspond to two different types of 335

variations. The middle peak and the right peak originate from the 336

same variation. The peaks around 0.2 P−1
in represent the funda- 337

mental frequencies (f0), and the peaks observed around 0.4 P−1
in 338

correspond to the second harmonic of the fundamental frequency 339

(2f0). The other peaks observed in figure 5 are also compo- 340

nents that are integer multiples of the fundamental frequency. For 341

Q = 2.6 , the period of the outer orbit is approximately five times 342

that of the inner orbit. Given that the frequency unit in the FFT 343

is P−1
in , the value 1/5 P−1

in = 0.2 P−1
in indicates that these peaks 344

are associated with variations caused by the periapsis passage of 345

the outer orbit. In contrast, the leftmost low-frequency peak origi- 346

nates from a different dynamical mechanism. This peak represents 347

the long-term variations caused by the continuous interaction be- 348

tween the inner and outer orbits such as mean-motion or secular 349

resonances. In this paper, the continuous components and peaks in 350

the low-frequency region, as depicted in figure 6, are collectively 351

referred to as low-frequency components. 352

Next, we compare the unstable ones (the top three) with the 353
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Fig. 5. The frequency distribution of orbital evolution (ain/aout). The horizontal and vertical axes correspond to the frequency (P−1
in ) and the normalized

amplitude, respectively. From left to right, each column shows 4 cases for prograde (Q=3.73), 4 prograde cases (Q=3.77), 4 retrograde cases (Q=2.55),
and 4 retrograde cases (Q = 2.60). The survival time of the corresponding system is shown in the upper right of each panel.
ALT text: Sixteen panels showing the results of the FFT of the orbits. Stable orbits exhibit distinct, evenly spaced peaks. In unstable cases, strong
continuous components are present, and peaks are not evenly spaced.

stable ones (the bottom). As mentioned above, the system survives354

longer when peaks at f0 and 2f0 are clearly visible (the bottom of355

Fig 6). On the other hand, the top three panels in figure 6 show356

larger continuous components compared to the bottom panel (the357

most stable one). Such continuous components are characteristic358

of unstable systems. Additionally, the first and third panels from359

the top show a DC component at 0 P−1
in . If the orbital evolution360

is not periodic, the center of oscillation deviates from the mean361

value of the data, resulting in the appearance of a DC component362

and peaks around 0 P−1
in .363

The difference between the second panel from the top and the364

bottom panel in figure 6 is also rather clear. It can be seen that365

the second panel from the top has clearly defined peaks, but the366

low-frequency component is larger than other peaks. Though this367

feature is common in most cases, there are exceptions such as the368

second-to-top panel of figure 5 with Q= 2.55. Therefore, it is not369

possible to make a definitive conclusion. Nevertheless, it is plau-370

sible that low-frequency components act as the dominant factor, 371

which governs the stability. 372

To summarize, the FFT analysis of the orbital element evolution 373

of a stable system reveals distinct fundamental frequency compo- 374

nents and their integer multiples, with small continuous compo- 375

nents. Furthermore, the peak near 0 P−1
in is relatively small. It is 376

rather surprising that such trends can be recognized by observing 377

the orbital evolution for only 103Pin. 378

3.3 Probability analysis of stability prediction using 379

FFT result 380

3.3.1 Quantification of Periodicity 381

In this section, we quantitatively evaluate the periodicity of the or- 382

bital evolution and show its relationship with the stability. In the 383

previous section, we found that stable triple systems tend to have 384

strong peaks at the fundamental frequency and its integer multi- 385
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Fig. 6. 4 examples of orbital evolution FFT for retrograde Q = 2.60 cases.
These figures correspond to the rightmost panel of figure 5. The verti-
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ALT text: Zoomed-in FFT spectra up to a frequency of 0.45 for four cases
with Q equal 2.6.

ples, with minimal continuous components. Systems that disinte-386

grate tend to have continuous components and/or a large peak be-387

tween zero and the fundamental frequencies. These components388

seem to be related to short lifetimes.389

We focused on this low-frequency component in order to quan-390

tify the non-periodicity of the orbital evolutions. Our FFT results391

show that the fundamental frequency appears around 0.10 P−1
in for392

prograde systems and around 0.19 P−1
in for retrograde systems.393

Taking this into account, we calculated the sum of the power of394

frequencies lower than this fundamental frequency and expressed395

it as a ratio to the total power of all peaks. For the prograde case,396

components with frequencies below 0.09 P−1
in were regarded as397

low-frequency components. For the retrograde case, components398

with frequencies below 0.16 P−1
in were regarded as low-frequency399

components.400

The power ratio of this low-frequency component is plotted401

against the triple’s survival time in figure 7. There is a clear cor-402
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relation between the power of the low-frequency component and 403

the lifetime of the system. Note that this low-frequency compo- 404

nent is not a single factor that determines the lifetime. We can 405

see that there are some systems with small low-frequency power 406

which still exhibit short lifetimes. Even so, it is clear that we can 407

use this measure as one way to predict the lifetime. 408

3.3.2 Predictability 409

In the previous subsection, we proposed a method to predict stabil- 410

ity using FFT results. Figure 7 illustrates the relationship between 411

the system’s survival time, which corresponds to its stability, and 412

the magnitude of its low-frequency component. in the time vari- 413

ation of the orbital element. We classified systems with a spe- 414

cific power ratio. The systems with a power ratio smaller than 415

the threshold are regarded as stable. For example, in the case of 416

retrograde orbits shown in figure 7, drawing a horizontal line at 417

a power ratio of 0.15 allows for the detection of all systems that 418

survive above 109Pin. When the power ratio is divided at a cer- 419

tain value, four patterns can be observed: (i) a stable system is 420

classified as stable (true positive; TP), (ii) an unstable system is 421
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classified as stable (false positive; FP), (iii) an unstable system is422

classified as unstable (true negative; TN), and (iv) a stable system423

is classified as unstable (false negative; FN). We verify the validity424

of our results and the accuracy of the predictions using these four425

classifications.426

Before proceeding to the detailed evaluation of accuracy, we427

introduce the following metrics:428

1. Accuracy: the ratio of the number of correct predictions to the429

total number of systems: (TP + TN)/(TP + TN + FP + FN).430

2. Precision: the ratio of the number of actual stable systems to431

that of systems regarded as stable: TP / (TP + FP).432

3. Recall or True Positive Rate (TPR): the ratio of the number433

of systems correctly identified as stable to that of real stable434

systems: TP / (TP + FN).435

4. False Positive Rate (FPR): the ratio of the number of systems436

that are incorrectly classified as stable to the total number of437

real unstable systems: FP / (TN + FP).438

5. Specificity: the ratio of the number of systems correctly classi-439

fied as unstable to that of unstable systems: 1-FPR.440

6. F-measure: the harmonic mean of Precision and Recall.441

These metrics vary depending on the threshold.442

Whole of our dataset is highly imbalanced to the unstable cases,443

so here we create subsets in which the numbers of stable and un-444

stable systems are equal. These subsets include all systems clas-445

sified as stable, along with the same number of unstable systems446

randomly sampled. Note that the definition of “stability” here is447

based on systems that survive for a certain minimum period of448

time (tstable). For example, in the prograde case with tstable=109,449

there are 98 stable systems and we sampled 98 unstable systems,450

so the total number of elements in the subset is 98× 2 = 196. For451

prograde systems, the subset sizes are 436, 238, 212, 198, and 196452

for tstable = 105Pin, 106Pin, 107Pin, 108Pin, and 109Pin, respec-453

tively. For retrograde systems, the corresponding sizes are 1232,454

414, 366, 342, and 328.455

First, we present the evaluation metrics for detecting both sta-456

ble and unstable systems in table 2 and 3 for the cases of tstable =457

107Pin, 108Pin, and 109Pin. The specific values for metrics re-458

ported in these tables are determined at a classification threshold459

for our power ratio criterion that is chosen to maximize the F-460

measure for prediction of stable system. This approach ensures461

we evaluate performance at an optimal balance between precision462

and recall, which is crucial for practical applications.463

For the prediction of stable systems (table 2), the maximum F-464

measure is approximately 0.8. We can see that the Accuracy is465

very high, 0.98–0.99. Note that this value is overrated because466

our dataset is really askew to unstable cases, i.e., 95-97% of the467

systems are unstable. The precision is around 0.9 and recall rate468

is around 0.7, which represent the imbalanceness of our datasets.469

For the prediction of unstable systems (table 3), by definition, the470

accuracy is identical between Table 2 and Table 3. When insta-471

bility is treated as the positive class, the maximum F-measure be-472

comes higher—around 0.99—compared to the case where stability473

is treated as positive. This is also because the majority of the sys-474

tems we prepared become unstable within 106Pin, and are there-475

fore labeled as unstable.476

Since our dataset is highly imbalanced, we also evaluated our477

model using balanced subsets. Table 4 shows the value of met-478

rics for our subsets. Each metric value represents the average over479

10 randomly generated subsets for each cases. Crucially, the met-480

rics reported in Table 4 are also derived from thresholds chosen481

to maximize the F-measure (for predicting stable systems) within482

these balanced conditions. In the balanced subset, the maximum 483

F-measure exceeds 95%, indicating highly accurate classification. 484

Furthermore, the standard deviation remains around 1%, indicat- 485

ing that the classification performance is consistent regardless of 486

how unstable systems are sampled. 487

Next, we evaluate our model’s performance using ROC curves. 488

The ROC curve visualizes the TPR values as the threshold is 489

progressively increased, thereby adjusting the FPR from 0 to 1. 490

Before showing ROC curve, we show the TPR and Specificity (1- 491

FPR) as functions of the threshold. Figure 8 shows the TPR and 492

Specificity as functions of the threshold in the case for tstable = 493

109Pin (one of the subsets used). Ideally, the TPR and Specificity 494

should be as close to 1 as possible. In practice, the choice of a 495

threshold must be determined by the user based on what type of 496

problem the stability criterion is intended to address.
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497

Figure 9 shows ROC curves for our results in the cases for 498

tstable = 105Pin, 106Pin, 107Pin, 108Pin, and 109Pin. The hor- 499

izontal axis represents the False Positive Rate (FPR), and the ver- 500

tical axis represents the True Positive Rate (TPR). The numbers 501

in the legend represent the value of area under the curve (AUC). 502

The AUC is approximately 98-99%, except for the retrograde 503
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Table 2. Metrics for the prediction of stable systems. The definitions of each parameter are provided in the main text.

tstable threshold max F-measure Accuracy Precision Recall (TPR) FPR Specificity
Prograde 107Pin 0.054 0.827 0.991 0.900 0.764 0.002 0.998

108Pin 0.054 0.847 0.993 0.889 0.808 0.003 0.997
109Pin 0.054 0.851 0.993 0.889 0.816 0.0/03 0.997

Retrograde 107Pin 0.106 0.810 0.977 0.905 0.732 0.006 0.994
108Pin 0.105 0.823 0.980 0.914 0.749 0.005 0.995
109Pin 0.105 0.842 0.982 0.914 0.780 0.005 0.995

Table 3. Metrics for the prediction of unstable systems. The same thresholds as table 2 are chosen.

tstable threshold F-measure Accuracy Precision Recall (TPR) FPR Specificity
Prograde 107Pin 0.054 0.996 0.991 0.994 0.998 0.236 0.764

108Pin 0.054 0.996 0.993 0.995 0.997 0.192 0.808
109Pin 0.054 0.996 0.993 0.995 0.997 0.184 0.816

Retrograde 107Pin 0.106 0.988 0.977 0.981 0.994 0.268 0.732
108Pin 0.105 0.989 0.980 0.983 0.995 0.251 0.749
109Pin 0.105 0.991 0.982 0.986 0.995 0.220 0.780

Table 4. Metrics with standard deviation for the subsets.

tstable threshold max F-measure Accuracy Precision Recall (TPR) FPR Specificity
P 107Pin 0.067 ± 0.002 0.987 ± 0.005 0.987 ± 0.005 0.983 ± 0.010 0.992 ± 0.003 0.017 ± 0.010 0.983 ± 0.010

108Pin 0.066 ± 0.000 0.993 ± 0.009 0.992 ± 0.009 0.985 ± 0.017 1.000 ± 0.000 0.015 ± 0.018 0.985 ± 0.018
109Pin 0.066 ± 0.001 0.991 ± 0.007 0.991 ± 0.007 0.985 ± 0.012 0.998 ± 0.006 0.015 ± 0.012 0.985 ± 0.012

R 107Pin 0.142 ± 0.000 0.969 ± 0.006 0.968 ± 0.007 0.941 ± 0.012 1.000 ± 0.000 0.063 ± 0.014 0.937 ± 0.014
108Pin 0.134 ± 0.008 0.968 ± 0.009 0.968 ± 0.010 0.954 ± 0.016 0.983 ± 0.017 0.047 ± 0.018 0.953 ± 0.018
109Pin 0.128 ± 0.009 0.978 ± 0.004 0.978 ± 0.004 0.973 ± 0.008 0.983 ± 0.011 0.027 ± 0.008 0.973 ± 0.008

tstable=105 case. As shown in the survival time distribution in fig-504

ure 1, the majority of systems are destroyed relatively early, while505

systems with survival times exceeding 106-107Pin deviate from506

the majority. These AUC values indicate that the orbital evolution507

of systems with a lifetime longer than 106-107Pin looks rather pe-508

riodic and thus the low-frequency component is small.509

While AUC provides a global measure of classification perfor-510

mance (Figure 9), its direct interpretation can be challenging for511

specific applications. For instance, AUC does not explicitly define512

an operational threshold or directly translate to the probability of513

a correct prediction for a given system. Therefore, to offer a more514

practical evaluation, we present metrics at a specific threshold cho-515

sen to maximize the F-measure. The F-measure, as the harmonic516

mean of precision and recall, represents a well-balanced criterion517

when these two metrics are in a trade-off relationship, providing a518

single value to optimize for a robust classification threshold.519

In the context of N -body simulations, accurately identifying520

both stable and unstable hierarchical triple systems is important,521

though for different reasons. Correctly identifying stable systems522

as stable (high recall for the stable class) is essential for apply-523

ing computationally efficient integration methods, thereby reduc-524

ing overall computational cost. Conversely, misidentifying an un-525

stable system as stable (low specificity for the stable class, or high526

false positive rate) could lead to the inappropriate application of527

such approximations and result in physically inaccurate simula-528

tion outcomes. For unstable systems, a high recall rate contributes529

to the efficiency of the N -body simulation by ensuring these typi-530

cally short-lived systems are integrated directly and their evolution531

is accurately captured without unnecessary computational effort.532

High precision for unstable systems ensures that systems flagged533

for direct integration are indeed unstable, maintaining the reliabil-534

ity of the simulation. Given these considerations, the F-measure 535

serves as a good overall metric for assessing the predictive power 536

for identifying both stable and unstable systems. This is particu- 537

larly important as our initial dataset is imbalanced; thus, evaluating 538

performance with metrics like F-measure, especially on balanced 539

subsets (as presented in Table 4), provides a more reliable assess- 540

ment of our method’s capabilities. 541

4 Discussion 542

4.1 Comparison with previous works and significance 543

of our approach 544

Our findings demonstrate that using Q value to determine stability 545

in the mixed-region is inadequate. It is consistent with the growing 546

understanding of chaotic dynamics in few-body systems. While 547

traditional Q-based criteria are widely employed, they inherently 548

struggle within this complex parameter space where orbital out- 549

comes are highly sensitive to inital conditions. Our simulations, 550

which show a wide dispersion in survival times for systems with 551

nearly identical inital Qvalues (Figure 1), underscore this limi- 552

tation. Approximately 5% of systems integrated with initial Q 553

values about 5% smaller than the MA01 critical value remained 554

stable beyond 109Pin, highlighting the significant population of 555

long-lived systems that Q-based criteria alone might misclassify 556

as unstable. 557

Approach that take into account the early orbital evolution of 558

the system offer a promising avenue for more reliable stability as- 559

sessment, particularly for identifying long-lived systems within the 560

mixed-region that Q-based criteria may miss. LT22 adopted such 561

an approach, using machine learning to predict lifetime from vari- 562

ations in orbital elements sampled up to 5× 105Pin at intervals of 563
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Fig. 9. ROC curves of prograde and retrograde cases. Each lines correspond to different survival time (tstable) and inclination (prograde and retrograde).
The left panel is a overall look, and the right panel is a closer look at the upper-left corner of the left panel.
ALT text: ROC curve and its zoomed-in view.

5πPin, achieving an AUC score of around 0.95.564

In contrast, our method focuses on a detailed Fourier analysis565

of a single orbital parameter (the semi-major axes ratio ain/aout)566

sampled at much finer intervals of 0.1Pin (approximately 100567

times denser than LT22) but over a significantly shorter initial inte-568

gration time of about 103Pin. This dense, short-timespan analysis569

results in a significantly reduced computational cost for integra-570

tion compared to LT22. Despite this efficiency, our Fourier-based571

approach, when evaluated on a balanced subset to ensure fiar com-572

parison in the context of imbalanced original data, achieved high573

AUC scores (e.g., > 0.95 as shown in figure 9), demonstrating its574

strong predictive power.575

The significance of our Fourier-based approach lies not only576

in its predictive accuracy and computational efficiency but also in577

its physical interpretability. By focusing on the periodicity of or-578

bital motion, as reflected in the frequency spectrum (Figure 5 and579

6), we tap into a fundamental dynamical characteristic. For in-580

stance, the observation that stabler systems tend to exhibit cleaner581

spectra with less power in low-frequency components (Figure 7)582

provides a more direct insight into the system’s dynamical state583

than a "black-box" machine learning model might offer. A notable584

aspect of this study is the systematic quantification of the link be-585

tween these early-phase spectral properties and long-term stability586

in hierarchical triple systems.587

In summary, stability criteria based solely on the initial Q pa-588

rameter, even with improved formulations, exhibit fundamental589

limitations in the mixed-region. Incorporating information from590

the system’s orbital evolution, as explored by LT22 and the present591

study, is a more effective strategy for achieving robust stability592

classification. By analyzing orbital elements in frequency space,593

our work suggests that it is possible no only to enhance the ac-594

curacy of stability predictions but also to potentially gain deeper595

access to the undelying dynamical mechanisms that govern the596

stability of hierarchical three-body systems. This approach may597

contribute to more efficient and physically grounded stability as-598

sessments in computationally demanding N -body simulations.599

4.2 Summary and future work 600

In this paper, we have carried out numerical simulations of hierar- 601

chical three-body systems in the mixed-region in order to explore a 602

new method for determining the triple stability. Our main findings 603

are as follows: 604

1. Hierarchical triple systems in the mixed-region exhibit a wide 605

distribution of survival times. The majority of systems in the 606

mixed-region break apart within 105Pin to 106Pin, but some 607

systems exhibit significantly longer survival times, exceeding 608

109Pin. Therefore, the current stability criterion based on Q is 609

inadequate for determining stability in the mixed-region. 610

2. There is a obvious difference in the orbital evolution between 611

stable and unstable triples in the first 103Pin. Stable triples 612

exhibit more distinct peaks in the frequency space at the funda- 613

mental frequency and its integer multiples. Additionally, stable 614

ones tend to have smaller low-frequency components. There 615

is a correlation between the triple’s instability and the stability 616

of its orbit. It is remarkable that variations in orbital evolution 617

already manifest within a mere 103Pin during the initial stages. 618

3. The stability of a system can be predicted using the proportion 619

of low-frequency components relative to the total power. This 620

method facilitates the identification of a limited number of sys- 621

tems that attain stability within the range of Q values situated 622

near the vicinity of instability. Notably, our quantification relies 623

solely on the low-frequency components. Combining this ap- 624

proach with other quantification methods is expected to enable 625

predictions with even higher accuracy. 626

Here, we present potential future works. First, our findings are 627

limited to coplanar cases, necessitating the verification of whether 628

analogous discussions can be extended to inclination cases. It is 629

also necessary to investigate how the results change when orbital 630

parameters such as mass and eccentricity are varied. Second, it is 631

plausible that incorporating eccentricity and other orbital parame- 632

ters could yield a more precise prediction of stability. For stable 633

systems, other orbital elements should also exhibit nearly periodic 634

variations. Lastly, as a means to identify components that elude 635

human visual perception, machine learning algorithms could be 636

employed to analyze the FFT results and subsequently predict the 637
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stability of triples.638
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