FDPS 講習会の手引 (Fortran 版)

行方大輔、谷川衝、岩澤全規、細野七月、似鳥啓吾、村主崇行、 野村昴太郎、

坪内美幸、牧野淳一郎

2024年9月5日

目 次

1	準備	Ĵ		2
	1.1	自分で	「用意した計算機で実行する場合	2
2	実習	本番		2
	2.1	重力 N	√体シミュレーションコード.............................	2
		2.1.1	概要	3
		2.1.2	シリアルコード.............................	3
			2.1.2.1 ディレクトリ移動	3
			2.1.2.2 Makefile 編集 (2022 年は必要)	3
			2.1.2.3 make の実行	3
			2.1.2.4 計算の実行	4
			2.1.2.5 結果の解析	4
		2.1.3	Phantom-GRAPE の利用	4
		2.1.4	PIKG の利用	6
		2.1.5	OpenMP/MPI の利用	6
	2.2	SPH >	ノミュレーションコード	8
		2.2.1	概要	8
		2.2.2	シリアルコード	8
			2.2.2.1 ディレクトリ移動	8
			2.2.2.2 Makefile 編集 (2022 年は必要	8
			2.2.2.3 make の実行	8
			2.2.2.4 計算の実行	9
			2.2.2.5 結果の解析	9
		2.2.3	OpenMP/MPI の利用	9

1 準備

1.1 自分で用意した計算機で実行する場合

https://github.com/FDPS/FDPS から FDPS の最新版をダウンロードし、好きなディレク トリ下で解凍する。これによってディレクトリ FDPS-master が出来る。 以下の方法のいずれかで FDPS の最新バージョンを取得できる。

• ブラウザから

- 1. ウェブサイト https://github.com/FDPS/FDPS で"Download ZIP"をクリックし、 ファイル FDPS-master.zip をダウンロード
- 2. FDPS を展開したいディレクトリに移動し、圧縮ファイルを展開
- コマンドラインから

以下のコマンドを実行するとカレントディレクトリにディレクトリ FDPS ができ、その下を Git のレポジトリとして使用できる

\$ git clone https://github.com/FDPS/FDPS.git

以下では、ウェブサイトからダウンロードした場合を想定し、ディレクトリ FDPS-master があるディレクトリの名前を fdps とする。

2 実習本番

実習で行うことは、FDPS を使って実装された重力 N 体シミュレーションコードと SPH シミュレーションコードを使用することである。最初に重力 N 体シミュレーションコード、 次に SPH シミュレーションコードを使用する。

なお、実習の際に Makefile を更新し、コンパイルし直すという作業を何回か行うが、こ こで注意しなくてはならないのは、Makefile を編集しただけでは実行ファイルの再作成は 行われないということである。この場合、きちんと前回作った実行ファイルを明示的に"\$ rm ./nbody.out"などで消す必要がある。これを忘れた場合、「make: 'nbody.out'は更 新済みです」と出る。

2.1 重力 N 体シミュレーションコード

ここでは、重力 N 体シミュレーションコードでの cold collapse を、並列環境無し、OpenMP を用いた並列計算環境、OpenMP + MPI を用いた並列計算環境の3つで行う。MPI は、環境があれば行う。

2.1.1 概要

ここでは、用意された重力 N 体シミュレーションコードを動かしてみよう。このコード は、重力多体系のコールドコラプスを計算する。この節でまず行うことは、シリアルコード のコンパイルと実行、出て来た結果の解析である。次にシリアルコードを Phantom-GRAPE を用いて高速化して、その速さを体験しよう。最後に OpenMP や MPI を利用して、さらに コードを高速化する。

2.1.2 シリアルコード

以下の手順で本コードを使用できる。

- ディレクトリ fdps/FDPS-master/sample/fortran/nbody に移動
- make を実行
- ジョブの投入
- 結果の解析
- OpenMP/MPIの利用(オプション)

2.1.2.1 ディレクトリ移動

ディレクトリ fdps/FDPS-master/sample/fortran/nbody に移動する。

\$ cd fdps/FDPS-master/sample/fortran/nbody

2.1.2.2 Makefile 編集 (2022 年は必要)

Makefile を編集し、 -std=c++11 になっているところを -std=c++17 に変更して下さい。これは 2023 年以降は不要なはずです。

なお、 C++ コンパイラのバージョンが非常に古い場合 (例えば CentOS 7 を利用中の場合)、このオプションが存在しないことがあります。この場合、新しいバージョンを利用可能 にして下さい。

2.1.2.3 make の実行

make コマンドを実行する。

\$ make

2.1.2.4 計算の実行

まずは、インタラクティブ実行で計算を実行する。これは、生成された実行ファイルの名 前をそのまま実行すればよい。

\$./nbody.out

正しくジョブが終了すると、標準入出力の最後には以下のようなログが出力されるはずで ある。energy error は絶対値で1×10⁻³のオーダーに収まっていればよい。

time:	9.5000000000E+000, energy error:	-3.5093659762E-003			
time:	9.6250000000E+000, energy error:	-3.5829042035E-003			
time:	9.7500000000E+000, energy error:	-3.6160022980E-003			
time:	9.8750000000E+000, energy error:	-3.5109567381E-003			
******	******* FDPS has successfully finished. *******				

ただし、後述する Phantom-GRAPE を用いた場合、energy error 数値は変わるので注意する。

2.1.2.5 結果の解析

ディレクトリ result に粒子分布を出力したファイル" snap000*xx*-prc000*yy*.dat" ができている。*xx、yy* はいずれも0埋めされた整数で、前者は時刻を、後者は MPI のランク番号 (逐次 実行の場合には必ず0となる)を表す。出力ファイルフォーマットは1列目から順に粒子の ID, 粒子の質量、位置の *x*, *y*, *z* 座標、粒子の *x*, *y*,*z* 軸方向の速度である。

ここで実行したのは、粒子数1024個からなる一様球(半径3)のコールドコラプスである。 コマンドライン上で以下のコマンドを実行すれば、時刻9における*xy*平面に射影した粒子 分布を見ることができる。

\$ gnuplot

\$ plot "result/snap00009-proc00000.dat" using 3:4

他の時刻の粒子分布をプロットすると、一様球が次第に収縮し、その後もう一度膨張する 様子を見ることができる (図1参照)。

2.1.3 Phantom-GRAPEの利用

以下では、相互作用計算に Phantom-GRAPE を使う場合について、記述する。この場 合、ユーザーはまずは Phantom-GRAPE 用の Makefile を利用環境 (使用するコンパイラ 等) に合わせて適切に変更する必要がある。今回使う Phantom-GRAPE のソースコードは、 fdps/FDPS-master/src/phantom_grape_x86/G5/newton/libpg5/以下に存在するので、そ こまで移動し、Makefile を編集する。以下は、現在 sample/fortran/nbody/に居る場合の 例である。

図 1:

- \$ cd ../../src/phantom_grape_x86/G5/newton/libpg5/
- \$ vi Makefile

よほど古い CPU でなければ、enable_avx2 = yes のコメントアウトを外す。 編集が終わったら、元のディレクトリに戻る (サンプルコード側の Makefile で自動的に Phantom-GRAPE ライブラリをビルドする設定になっているので、ここでコンパイルする必 要はない)。次に、Makefile の修正を行う。Makefile の34 行目に Phantom-GRAPE を使用 するか否かを決定しているスイッチが存在している。このスイッチはデフォルトではコメン トアウトされているため、以下のようにしてコメントアウトを解除する。

use_phantom_grape_x86 = yes

無事にコンパイルが通れば、以降の実行・解析の手順は同様である。実行直後に次のよう な表示がされれば、正しく実行ができている。

2.1.4 PIKG の利用

以下では、PIKGで生成された相互作用計算カーネルを使う場合について記述する。まず Makefileの修正を行う。Makefileの35行目にPIKGを使用するか否かを決定しているス イッチが存在している。このスイッチはデフォルトではコメントアウトされているため、以 下のようにしてコメントアウトを解除する。

 $use_pikg_x86 = yes$

make を実行し無事にコンパイルが通れば、以降の実行・解析の手順は同様である。

2.1.5 OpenMP/MPIの利用

OpenMP や MPI を利用する場合について以下に記述する。

- OpenMP のみ使用の場合
 - Makefileの編集
 - * マクロ FC, CXX に、それぞれ OpenMP 対応の Fortran, C++コンパイラを代 入する。
 - * "FCFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp" の行のコ メントアウトを外す
 - * "CXXFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp"の行の コメントアウトを外す
 - 環境変数 OMP_NUM_THREADS の値を使用したいスレッド数にする。利用環境がLinux あるいは UNIX で、シェルが bash の場合、スレッド数を4に設定するには以下 を実行する。

\$ export OMP_NUM_THREADS = 4

- make コマンドを実行する。

- 実行方法はシリアルコードの場合と同じである。

of thread is 4と表示されている。これで、4スレッドでの並列計算が行われ ている事が確認できた。

- OpenMP と MPI の同時使用の場合
 - Makefile の編集
 - * マクロ FC, CXX に、それぞれ MPI 対応の Fortran, C++コンパイラを代入する。
 - * "FCFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp"の行のコ メントアウトを外す
 - * "CXXFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp"の行の コメントアウトを外す
 - * "FCFLAGS += -DPARTICLE_SIMULATOR_MPI_PARALLEL" の行のコメントアウト を外す
 - * "CXXFLAGS += -DPARTICLE_SIMULATOR_MPI_PARALLEL"の行のコメントアウトを外す
 - 環境変数 OMP_NUM_THREADS の値を使用したいスレッド数に設定する。
 - make コマンドを実行する。
 - システムの MPI 環境の方法で実行する。(例えば、 mpirun -np 2 ./nbody.out) 正しく実行された場合、以下のように表示されるはずである。

of processes is 2、# of thread is 2と表示されており、2プロセス2ス

レッドでの並列計算が行われている事が確認できた。

2.2 SPHシミュレーションコード

2.2.1 概要

ここでは、SPHシミュレーションコードを動かす。用意されているコードは、衝撃波管問題の計算を行う。この節でまず行うことは、シリアルコードのコンパイルと実行、出て来た結果の解析である。最後にOpenMPやMPIを利用して、さらにコードを高速化する。

2.2.2 シリアルコード

以下の手順で本コードを使用できる。

- ディレクトリ fdps/FDPS-master/sample/fortran/sph に移動
- make を実行
- ジョブの投入
- 結果の解析
- OpenMP/MPIの利用(オプション)

2.2.2.1 ディレクトリ移動

ディレクトリ fdps/FDPS-master/sample/fortran/sph に移動する。

2.2.2.2 Makefile 編集 (2022 年は必要

Makefile を編集し、-std=c++11 になっているところを -std=c++17 に変更して下さい。 なお、 C++ コンパイラのバージョンが非常に古い場合 (例えば CentOS 7 を利用中の場 合)、このオプションが存在しないことがあります。この場合、新しいバージョンを利用可能 にして下さい。

2.2.2.3 make の実行

make コマンドを実行する。

2.2.2.4 計算の実行

まずは、インタラクティブ実行で計算を実行する。これは、生成された実行ファイルの名 前をそのまま実行すればよい。

\$./sph.out

正しくジョブが終了すると、標準入出力の最後には以下のようなログが出力されるはずで ある。

2.2.2.5 結果の解析

ディレクトリ result にファイルが出力されている。ファイル名は" snap000*xx*-proc00*yy*.dat" となっている。*xx*, *yy* は 0 埋めされた整数で、前者が時刻を、後者が MPI のランク番号を表 す。出力ファイルフォーマットは 1 列目から順に粒子の ID、粒子の質量、位置の *x*, *y*, *z* 座 標、粒子の *x*, *y*, *z* 軸方向の速度、密度、内部エネルギー、圧力である。

以下のコマンドを実行すれば、横軸に x、縦軸に密度の図が作成される。

\$ gnuplot

> plot "result/snap00040-proc00000.dat" using 3:9 w p

正しい答が得られれば、図2のような図を描ける。

2.2.3 OpenMP/MPIの利用

OpenMP や MPI を利用する場合を以下に示す。

- OpenMP のみ使用の場合
 - Makefileの編集

- * マクロ FC, CXX に、それぞれ OpenMP 対応の Fortran, C++コンパイラを代 入する
- * "FCFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp" の行のコ メントアウトを外す
- * "CXXFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp"の行の コメントアウトを外す
- 環境変数 OMP_NUM_THREADS の値を使用したいスレッド数にする。
- make コマンドを実行する。
- シリアルコードと同じように実行する。正しく実行された場合、以下のように表示されるはずである。

- OpenMP と MPI の同時使用の場合
 - Makefileの編集
 - * マクロ FC, CXX に、それぞれ MPI 対応の Fortran, C++コンパイラを代入する
 - * "FCFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp"の行のコ メントアウトを外す

- * "CXXFLAGS += -DPARTICLE_SIMULATOR_THREAD_PARALLEL -fopenmp"の行の コメントアウトを外す
- * "FCFLAGS += -DPARTICLE_SIMULATOR_MPI_PARALLEL" の行のコメントアウト を外す
- * "CXXFLAGS += -DPARTICLE_SIMULATOR_MPI_PARALLEL"の行のコメントアウトを外す
- 環境変数 OMP_NUM_THREADS の値を使用したいスレッド数にする。
- make コマンドを実行する。
- システムの MPI 環境の使い方に従って実行する。正しく実行された場合、以下のように表示されるはずである。